Inequilogical spaces, directed homology and noncommutative geometry (*)
نویسنده
چکیده
We introduce a preordered version of D. Scott's equilogical spaces [Sc], called inequilogical spaces, as a possible setting for Directed Algebraic Topology. The new structure can also express 'formal quotients' of spaces, which are not topological spaces and are of interest in noncommutative geometry, with finer results than the ones obtained with equilogical spaces, in a previous paper. This setting is compared with other structures which have been recently used for Directed Algebraic Topology: spaces equipped with an order, or a local order, or distinguished paths or distinguished cubes. MSC: 18B30, 54A05, 55U10, 55Nxx, 46L80.
منابع مشابه
Directed combinatorial homology and noncommutative geometry
We will present a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topo...
متن کاملDirected Combinatorial Homology and Noncommutative Tori ( * ) (the Breaking of Symmetries in Algebraic Topology)
This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topological ...
متن کاملEquilogical Spaces, Homology and Noncommutative Geometry ( * )
After introducing singular homology for D. Scott's equilogical spaces [Sc], we show how these structures can express 'formal quotients' of topological spaces, which do not exist as ordinary spaces and are related with well-known noncommutative C*-algebras. This study also uses a wider notion of local maps between equilogical spaces, which might be of interest for the general theory of the latte...
متن کاملNormed combinatorial homology and noncommutative tori (*)
Cubical sets have a directed homology, studied in a previous paper and consisting of preordered abelian groups, with a positive cone generated by the structural cubes. By this additional information, cubical sets can provide a sort of 'noncommutative topology', agreeing with some results of noncommutative geometry but lacking the metric aspects of C*-algebras. Here, we make such similarity stri...
متن کاملNORMED COMBINATORIAL HOMOLOGY AND NONCOMMUTATIVE TORI Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday
Cubical sets have a directed homology, studied in a previous paper and consisting of preordered abelian groups, with a positive cone generated by the structural cubes. By this additional information, cubical sets can provide a sort of ‘noncommutative topology’, agreeing with some results of noncommutative geometry but lacking the metric aspects of C∗-algebras. Here, we make such similarity stri...
متن کامل